EPA (USA) cancer risk models as an alternative to effective dose to estimate the radiation risk for patients in health care

M ANDERSSON^{*1}, K ECKERMAN² AND S MATTSSON¹ 2016-11-17

Carry and Carry Constants

¹MEDICAL RADIATION PHYSICS, ITM, LUND UNIVERSITY ²CENTER FOR RADIATION PROTECTION KNOWLEDGE, OAK RIDGE NATIONAL LABORATORY, TN, USA

SIGI

*

Risk estimations for stochastic effects

- International commission on radiological protection (ICRP)
 - Third quantity to estimate biological effects
 - » Effective dose in ICRP publication 103

ICRP Publ. 103 (2007)

Effective dose

- Detriment:
 - The total harm to health experienced by radiation
- Detriment-adjusted risk:
 - A modification of the probability of the occurrence of a stochastic effect by the severity of the outcome e.g adjust for morbidity and suffering of non-fatal cancers

Exposed population	ion Canœr		Heritable effects		Total	
	Present	ICRP 60	Present	ICRP 60	Present	ICRP 60
Whole	5.5	6.0	0.2	1.3	5.7	7.3
Adult	4.1	4.8	0.1	0.8	4.2	5.6

Table A.4.4. Detriment adjusted nominal risk coefficients for cancer and heritable effects (10⁻² Sv⁻¹)¹.

¹ Values from Tables A.4.1a, A.4.1b, and Publication 60.

Effective dose

- Effects of the adjusted effective dose:
 - Skin has been down scaled
 - Bone has been scaled up by a factor of ten

rable A.4.5. Troposed ussue weighting factors.	Fable A	.4.3.	Proposed	tissue	weighting	factors.
--	---------	-------	----------	--------	-----------	----------

Tissue	w_{Γ}	$\sum w_1$
Bone-marrow (red), Colon, Lung, Stomach, Breast, Remainder Tissues	0.12	0.72
(Nominal w _T applied to the average dose to 14 tissues)		
Gonads	0.08	0.08
Bladder, Oesophagus, Liver, Thyroid	0.04	0.16
Bone surface, Brain, Salivary glands, Skin	0.01	0.04

* Remainder Tissues (14 in total): Adrenals, Extrathoracic (ET) region, Gall bladder, Heart, Kidneys, Lymphatic nodes, Muscle, Oral mucosa, Pancreas, Prostate, Small intestine, Spleen, Thymus, Uterus/cervix.

- Risk concept of the ICRP:
 - ICRP recognize that there are significant differences between sex (particular for breast) and in respect of age at exposure

but

 believes in a general system of protection that is simple and sufficiently robust.

American Environmental Protection Agency (EPA)

- Biological Effects of Ionizing Radiation (BEIR) VII
- "Blue book" EPA Radiogenic Cancer Risk Models and Projections for the U.S. Population
 - Lifetime attributeble risk (LAR)

Lifetime attributable risk (LAR)

LAR have two different risk estimations

- 1. Estimates the risk of receiving a secondary cancer
- 2. and the mortality risk of the received cancer
- LAR risk estimations are generated from four different variables :
 - a) Gender (male, female)
 - b) Age (0-120 years)
 - c) Attained age
 - d) Age at exposure

Adjustment for a Swedish population

First approximation

Change the expected life probability from a US population to a Swedish

*Swedish data taken from Statistiska centralbyrån

Tomosynthesis and mammography

Risk for female breast cancer

Doses from: K Lång et. al 2016. Performance of one-view breast tomosynthesis as a stand-alone breast cancer screening modality: results from the Malmö Breast Tomosynthesis Screening Trial, a population-based study

Conventional pulmonary x-ray

Age of subject

CT head scan

DLP= 583 mGy*cm CTDI_{vol}(16cm)=50.0 mGy

For a 45 year old	receiving a new cancer	and also die of the new cancer
Male	8.4597e-05 or 1/12 000	5.1058e-05 or1/20 000
Female	8.8886e-05 or 1/11 000	5.4736e-05 or 1/18 000

Doses calculated with CT-Expo v2.4 (Siemens Flash tube A)

CT abdominal scan

DLP= 338 mGy*cm CTDI_{vol}(32cm)=7.0 mGy

For a 45 year old	receiving a new cancer	and also die of the new cancer
Male	5.6289e-04 or 1/ 1 700	2.3778e-04 or 1/4 200
Female	5.0948e-04 or 1/2 000	2.5810e-04 or 1/ 3 800

Doses calculated with CT-Expo v2.4 (Siemens Flash tube A)

Nuclear medicine

UNIVERSITY

Absorbed doses from ICRP publication 128

Conclusion

• Effective dose is a protection unit for a whole population.

Thank you!

• Lifetime attributeble risk is a unit for the U.S population, estimates the morbidity and mortality for radiation induced cancers, which also is valid to subgroups* (gender and age).

